A Framework for Determining Outlying Microarray Experiments

Raymond Wan Bioinformatics Centre Kyoto University, Japan rwan@kuicr.kyoto-u.ac.jp

June 9, 2008

Collaborators: Åsa M. Wheelock (Karolinska Institutet, Sweden) and Hiroshi Mamitsuka (Kyoto University, Japan)

Outline

- Outline
- Overview
- Motivation

Framework and Application

Experiments

Conclusion

Framework and Application

Experiments

Overview

- Outline
- Overview
- Motivation

Framework and Application

Experiments

- Develop a framework to assess the degree to which an entire microarray experiment *T* is an outlier using a separate set of *n* (currently, replicate) experiments.
- Framework is based on an undirected graph indicating similarity between probes across the *n* replicates.
- Scoring of T is based on a count of the number of probes which differ.

Motivation

- Outline
- Overview
- Motivation

Framework and Application

Experiments

- 1. Microarray repositories
 - Microarray repositories like NCBI GEO and Stanford SMD hold many microarray data sets which are already being used for meta-analysis of microarrays.
 - Despite the variations between laboratories, can they also be used to determine whether or not a newly generated experiment is "suspicious"?
- 2. Experimenter bias
 - Microarray experiments represent monetary costs to the experimenter.
 - Can an impartial mechanism be developed which makes use of already-made data sets (as a guide)?

- Outline
- Overview
- Motivation

Framework and

Application

- Framework (1)
- Framework (2)
- Application of

Framework

- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning

microarrays ...

• Simulating Data

Experiments

Conclusion

Framework and Application

Framework (1)

- Outline
- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- Outliers for Microarrays
- Comparison Method
- Cleaning
- microarrays...
- Simulating Data
- Experiments

Conclusion

Given: n replicate microarrays and the new experiment T. Steps:

- 1. Build an undirected graph G(V, E) of distance similarities using the *n* replicate microarrays and a distance threshold d_t .
- 2. Insert the expression levels from the new experiment T.
- 3. Check how many expression levels differ from their immediate neighbors using an expression threshold e_t ; represent this as a percentage on a per-slide basis.

Distance similarities \implies Euclidean distance, since we are interested in probes which consistently have the same expression levels.

Framework (2)

- Outline
- Overview
- Motivation
- Framework and Application
- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning
- microarrays...
- Simulating Data
- Experiments
- Conclusion

New experiment

Application of Framework

- Outline
- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- Outliers for Microarrays
- Comparison Method
- Cleaning
- microarrays...
- Simulating Data
- Experiments

Conclusion

With the undirected graph G(V, E) made, how can we assess the experiments?

We apply "distance-based outlier detection" (from the field of Knowledge Data Discovery [KDD]), which examines how far a database record is from all other records. Some definitions [Bay and Schwabacher, 2003]:

- 1. Outliers are the examples for which there are fewer than p other examples within a distance d.
- 2. Outliers are the top n examples whose distance to the kth nearest neighbor is greatest.
- 3. Outliers are the top n examples whose average distance to the k nearest neighbors is greatest.

Distance-based Outliers for Microarrays

- Outline
- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning

microarrays...

- Simulating Data
- Experiments

Conclusion

Between every probe p_1 and p_2 , there is a distance similarity $d(p_1, p_2)$ and an expression similarity $e(p_1, p_2)$, calculated from the n replicates and T, respectively. These values are regulated by two thresholds: d_t and e_t .

Within the probe's neighborhood, if there are more distant-neighbors than close-neighbors, then the probe is counted against T (as an outlying probe).

Comparison Method

- Outline
- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning
- microarrays...
- Simulating Data
- Experiments

Conclusion

Compare against inter-quartile range (IQR), Z-test, and Q-test, where the Q-test is defined as:

$$Q(x) = \frac{|x - (\text{closest value to } x)|}{\text{range}}$$
(1)

So, if we visualize the n replicates with T together:

Applying the statistical methods

Applying the framework

Cleaning microarrays...

- Outline
- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning
- microarrays...
- Simulating Data

Experiments

Conclusion

Within the same framework, we consider an error function based on an energy function derived from each of the n probes and their neighborhood:

$$E = \frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} (\tilde{p}_{i} - w_{ij}\tilde{p}_{j})^{2}.$$
 (2)

Solving for some probe p_k , we obtain n simultaneous equations:

$$\mathbf{p} = \mathbf{A} \cdot \mathbf{p} + \mathbf{c} \,. \tag{3}$$

where **v** is the solution vector and **A** is:

$$a_{ij} = \frac{2w_{ij}}{|\mathcal{N}_i| + \sum_k^N w_{ik}^2} \tag{4}$$

Simulating Data

Outline

- Overview
- Motivation

Framework and Application

- Framework (1)
- Framework (2)
- Application of
- Framework
- Distance-based
- **Outliers for Microarrays**
- Comparison Method
- Cleaning

microarrays...

Simulating Data

Experiments

Conclusion

We evaluate our framework using artificially created microarray data using the SIMAGE web server¹ [Albers et al., 2006].

We created:

- 6 slides (3 sets of dye-swap)
- 4,400 probes each using default parameters²
- 1 slide with the change in the Gaussian noise distribution $N(0, \sigma_{\epsilon}^2)$ from $\sigma_{\epsilon}^2 = 0.219$ to 0.438.

¹URL: http://bioinformatics.biol.rug.nl/websoftware/simage/ ²The SIMAGE maintainers obtained these values by modeling 23 real experiments.

- Outline
- Overview
- Motivation

Framework and Application

Experiments

- Statistical methods
- Distance-based
- outlier methods
- Summary

Conclusion

Experiments

Statistical methods

Solid lines: Average IQR or Z-score across the replicates; **Dashed lines**: IQR or Z-score for T. Q-test performed 1.64 % and 1.01 % for replicates and T, respectively.

Distance-based outlier methods

Solid lines: Average across replicates; Dashed lines: T. Dotted lines: Effect from apply error function to probes marked as outliers with respect to their neighbors.

Summary

 Outline

- Overview
- Motivation

Framework and Application

- Experiments
- Statistical methods
- Distance-based outlier methods
- Summary

```
Conclusion
```

Statistical methods:

X Report higher percentages for the replicates than T.
✓ Number of errors reported decreases as we relax the parameter.
X Q-test appears less strict than the other two tests (low percentage).

Distance-based outlier methods:

- \checkmark Results reasonable for small parameter values.
- X The lines for replicates and T are indistinguishable as we increase the parameters (blue lines and moving right in the graph).
- X As we add more edges, the error function over-cleans since the dotted lines are brought closer to the x-axis.

- Outline
- Overview
- Motivation

Framework and Application

Experiments

Conclusion

- Summary
- Future Work
- Acknowledgements
- References

Summary

- Outline
- Overview
- Motivation

Framework and Application

Experiments

Conclusion

- Summary
- Future Work
- Acknowledgements
- References

We have:

- Proposed a framework for assessing the reliability of a single microarray experiment using other [external] experiments and scoring based on the percentage of differing probes.
- Executed preliminary experiments, but more detailed experiments needed to assess parameter choice.
- The aim of this work is to give experimenters an unbiased assessment of their microarray experiment prior to data analysis.

Future Work

	Out	tline
-	- u	

- Overview
- Motivation

Framework and Application

Experiments

Conclusion

- Summary
- Future Work
- Acknowledgements
- References

In the future, we would like to:

- Apply this to actual microarray data. So far, these obstacles:
 - Publicly available data are usually normalized prior to upload to GEO/SMD.
 - "Suspicious" data would not be uploaded to a public repository anyway...

So, we welcome any ideas on what could serve as the replicates and/or $T\ldots$

• Consider generalizing graph construction; perhaps using non-replicates or sequence similarity between genes...

Acknowledgements

- Outline
- Overview
- Motivation
- Framework and Application
- Experiments
- Conclusion
- Summary
- Future Work
- Acknowledgements
- References

Collaborators:

- Prof. Hiroshi Mamitsuka (Bioinformatics Centre, Kyoto University, Japan)
- Dr. Åsa M. Wheelock (Department of Medicine, Karolinska Institutet, Sweden)

Acknowledgements:

- Dr. Matthew J. Bartosiewicz (formerly University of California, Davis)
- Dr. Timothy Hancock (Bioinformatics Centre, Kyoto University, Japan)

Data and Software:

• SIMAGE

References

- Outline
- Overview
- Motivation

Framework and Application

Experiments

Conclusion

- Summary
- Future Work
- Acknowledgements
- References

C. J. Albers, R. C. Jansen, J. Kok, O. P.Kuipers, and S. A. van Hijum. SIMAGE: Simulation of DNA-microarray gene expression data. *BMC Bioinformatics*, 7(205), 2006

S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In *Proc. 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD)*, pages 29–38, 2003

D. P. Shoemaker, C. W. Garland, and J. W. Nibler. Experiments in physical chemistry. McGraw-Hill, fifth edition, 1989

Q-test

• Outline	Critica	al value	s for the	e Q-test	accord	ling to a	a 90% c	onfiden	ce inter	val
Overview	are ³ .					-				
Motivation Framework and	<u>are .</u> N	3	4	5	6	7	8	9	10	
Application Experiments	Q_c	0.94	0.76	0.64	0.56	0.51	0.47	0.44	0.41	
Conclusion • Summary • Future Work • Acknowledgements • References										

³Source:Shoemaker et al. [1989, pg. 35]

Error Function Extras

• Outline

Overview

Motivation

Framework and Application

Experiments

Conclusion

- Summary
- Future Work
- Acknowledgements
- References

Partial derivative with respect to a probe p_k ($\frac{\partial E}{\partial p_k}$) and solve for p_k :

$$p_k = \frac{2\sum_i^N w_{ki} p_i}{|\mathcal{N}_k| + \sum_i^N w_{ki}^2}$$
(5)

$$a_{ij} = \frac{2w_{ij}}{|\mathcal{N}_i| + \sum_k^N w_{ik}^2} \tag{6}$$

While the solution vector ${\bf v}$ represents "new" values, we are more concerned with how many of the values changed within a small $\Delta.$