
Review of Genomic Perl
From Bioinformatics Basics to Working Code

Rex A. Dwyer
Publisher: Cambridge University Press, 2003

ISBN: 0-521-80177-X

Review by:
Raymond Wan (rwan@cs.mu.oz.au)
University of Melbourne, Australia

1 Overview

Genomic Perl by Rex A. Dwyer covers several topics in bioinformatics in the
context of the Perl language. According to the preface, the book selects some
topics in bioinformatics, and presents them to the intended audience – a student
in an “upper year level undergraduate or graduate level course”.

Overall, I found the book interesting to read, but I believe it should be read
with other resources available for reference.

2 Summary of Contents

The book consists of 17 chapters and appendices. While certain chapters build
on the work from previous ones, each is self-contained and follows a fixed for-
mula. The first half of a chapter provides the background in biochemistry that is
essential to the chapter. Then, a Perl program is built up during the remainder
of the chapter which addresses the problem, with difficult parts explained in the
text. Every chapter has one to around ten questions for the student, with no
solutions provided. The difficulty of the questions range from drawing a suffix
tree for a word to extending the functionality of the Perl program from that
chapter. Every chapter concludes with a bibliography. A brief summary of each
chapter is as follows.

1. The Central Dogma. The book begins with an introduction to bio-
chemistry, with emphasis on DNA, RNA, proteins, and the relationships
between them. A Perl program that outputs the proteins that are encoded
by a given DNA sequence is developed.

2. RNA Secondary Structure. An RNA molecule physically exists in
three dimensional space, but is described at various levels. The nucleotides
of an RNA sequence are written down as a sequence of characters at the
lowest level. At the next level (also called its secondary structure), the
molecule folds so that pairs of nonadjacent nucleotides form hydrogen
bonds. Two programs examine how the sequence folds, while demonstrat-
ing recursion and dynamic programming.



3. Comparing DNA Sequences. The alignment of pairs of DNA se-
quences in the presence of errors is an example of approximate string-
matching problems. A Perl program is given which addresses global align-
ment using the Needleman-Wunsch algorithm, another example of dy-
namic programming.

4. Predicting Species: Statistical Models. Probability, information the-
ory, and entropy form the basis for a simple program which predicts the
probability a DNA strand came from a particular species.

5. Substitution Matrices for Amino Acids. Substitution matrices ex-
tend the alignment techniques of Chapter 3 for proteins which differ due
to evolution. The design of a Perl program which computes substitution
matrices is shown.

6. Sequence Databases. Biological sequences are stored in public databases
in several formats. A program using Perl’s limited object-oriented facilities
is developed which reads and processes the GenBank data format.

7. Local Alignment and the BLAST Heuristic. Chapter 3 describes
an algorithm for aligning two entire sequences. In contrast, “local align-
ment” refers to the alignment of substrings of two sequences. The Smith-
Waterman algorithm and BLAST heuristic are implemented in Perl for
this purpose.

8. Statistics of BLAST Database Searches. The previous chapter is
extended by looking at the statistics associated with aligning using the
BLAST heuristic.

9. Multiple Sequence Alignment I. Another extension to Chapter 3 looks
at the problem of aligning more than two sequences at a time by first
extending the Needleman-Wunsch algorithm and then investigating incre-
mental strategies, with a brief excursion into NP-completeness.

10. Multiple Sequence Alignment II. The discussion that began in the
previous chapter continues by looking at how the efficiency of the algo-
rithms for multiple sequence alignment can be improved.

11. Phylogeny Reconstruction. Phylogenies are trees which depict the
course of evolution of several species. A Perl program is developed which
creates a tree from a list of protein sequences.

12. Protein Motifs and PROSITE. Protein motifs are short sequences,
each with a known biochemical function. PROSITE is a database of these
motifs. Perl programs are implemented which first process motifs in the
PROSITE file format, and then build a suffix tree so that all entries in
the database can be efficiently compared with a sequence.



13. Fragment Assembly. Fragment assembly is an example of determining
the shortest common superstring. That is, given a list of substrings rep-
resenting fragments of a DNA sequence, what is the longest string that
contains every substring in the list? A simplified version of the PHRAP
program for addressing this problem is created in this chapter.

14. Coding Sequence Prediction with Dicodons. Statistical methods
can be employed for finding new genes in a DNA sequence when a training
set of known genes is available.

15. Satellite Identification. This chapter shows how identifying satellites,
or tandem repeats in DNA, can be done in Perl. Both DNA fingerprinting
and the reconstructing of phylogenies can benefit from these techniques.

16. Restriction Mapping. The restriction map of a DNA sequence is a
list of locations where a restriction enzyme is known to cut the sequence.
Creating a restriction map is one way of analysing a long sequence of DNA.
Two techniques for achieving this in Perl are given, one which assumes the
data set to be perfect, and another which allows for imprecise data.

17. Rearranging Genomes: Gates and Hurdles. One DNA sequence
may contain the same genes as another, but in a different order. The
number of steps required to transform the first sequence to the second can
be used to determine how they are related, with respect to evolution.

18. Appendices. The appendices present a program for drawing the two
dimensional RNA secondary structure diagrams (Chapter 2), some ideas
for reducing space usage during the aligning of sequences, and a Perl
solution to the disjoint sets problem.

3 Opinion

I approached this book with a few years of experience with Perl, and only limited
knowledge of biochemistry. There were several aspects about the book which I
liked. First, the structure of each chapter was simple and easy to follow. Second,
most chapters are short and can cover the topic in just over 10 pages. That is,
rather than going into detail with only a few topics, someone reading this book
is given a taste of 17 topics. Third, while the bibliography of each chapter is
short, only the most relevant citations are given.

While the theme of this book is bioinformatics, readers of this column will
be interested that some time is spent on the underlying algorithms. Dynamic
programming, recursion, recurrence relations, NP-completeness, regular expres-
sions, and suffix trees are sprinkled throughout the book. The time and space
complexity of algorithms are also occasionally given.

However, there are some parts of the book that did not appeal to me. Some-
times, the problem descriptions are too brief, and I often found myself asking
questions whose answers were not available, even though they were not crucial.



For example, in the first chapter, several definitions form the foundation of the
introduction to biochemistry. But, due to the limited amount of space, a clear
picture of how DNA, RNA, and proteins relate to each other is difficult to form.
While a complete understanding of biochemistry is not needed to code a solu-
tion in Perl, the short background given in each chapter may cause some readers
to yearn for more. Likewise, if someone does not have sufficient knowledge of
Perl, then the latter half of each chapter may be hard to follow. The author
has decided to spread coverage of Perl syntax throughout the book, rather than
dedicating an introductory chapter or appendix to it. This choice almost forces
readers to go through the book in order. Finally, the absence of pseudocode
makes it difficult to generalise the solution to other languages. While Perl is
used often by bioinformaticians, Perl source code is sometimes difficult to read,
and text which explain sections of a program can easily become repetitive and
uneventful.

Most of these shortcomings, though, are expected in a book such as this.
Both biochemistry and computer science are vast fields which can only be fully
understood by books dedicated to them. In fact, bioinformatics is a difficult
field to write for since it juggles several seemingly disjoint areas including com-
puter science, mathematics, and biochemistry. And, as the goal of this book
is to explain bioinformatics using Perl as a framework, the reliance on Perl is
unavoidable.

Because of this, the reader may need several other resources in order to follow
this book. While Genomic Perl is suitable for an upper year level undergraduate
course and above, a lecturer or book is necessary to fill in any missing gaps.
These gaps include biochemistry, mathematics, Perl, and algorithms, depending
on the individual. That is, reading this book in isolation may prove difficult.

In conclusion, I am pleased to say that this book is a rare example of when
one can judge a book by its cover! The title “Genomic Perl: From Bioinformat-
ics Basics to Working Code” summarises the structure chosen by the author.
Each chapter commences with only the rudimentary basics for each topic, and
concludes with working Perl code, which is also included in the accompanying
CD ROM. Excluding students, others with an adequate knowledge of bioinfor-
matics may benefit from this book since the accompanying Perl source code can
be easily extended and deployed.


